劉益
截積術(shù)
從平面幾何圖形截取一段已知面積,求截取面積有關(guān)的線段長度。 “ 圓田一段直徑十三步,今從邊截積三十二步;問:所截弦矢各幾步?答數(shù)弦十二步矢四步 ”
劉益得到下列方程
即四次方程: ? ? --> 5 x 4 + 52 x 3 + 128 x = 4096 {\displaystyle -5x^{4}+52x^{3}+128x=4096}
演段術(shù)
劉益演段圖
劉益《議古根源》一書今已失傳,但在南宋數(shù)學(xué)家楊輝的著作中還保留《議古根源》演段術(shù)的片段 。楊輝《田畝比類乘除捷法》卷下: 中山劉先生序謂算之術(shù)入則諸門出則直田;《議古根源》故立演段百問,蓋欲演算之片斷也,知片斷則能窮根源。
第六問:直田積八百六十四步,只云長闊共六十步,問長多闊幾何?
答曰十二步。
演段曰:和自乘有四段直田積一段差方積,所以用四積減和方余得差方一段,卻取方面。
帶從開方正負(fù)損益法
劉益將賈憲的改進(jìn)成為解含任意系數(shù)的高次方程的方法 例:解下列四次方程
? ? --> 5 x 4 + 52 x 3 + 128 x = 4096 {\displaystyle -5x^{4}+52x^{3}+128x=4096}
以4為商(矢)
程序: 1)上商乘負(fù)隅并入下廉得三十二
2) 以商四乘下廉三十二的一百二十八入上廉共二百五十六
3) 又已上商乘上廉得一千二十四為方法
4) 以上商四乘一千二十四得四千九十六與實(shí)相消為零
得矢=4
評(píng)價(jià)
數(shù)學(xué)史家錢寶琮說:“宋時(shí)已能建立含負(fù)系數(shù)的四次方程,并能數(shù)值求解
參考文獻(xiàn)
免責(zé)聲明:以上內(nèi)容版權(quán)歸原作者所有,如有侵犯您的原創(chuàng)版權(quán)請(qǐng)告知,我們將盡快刪除相關(guān)內(nèi)容。感謝每一位辛勤著寫的作者,感謝每一位的分享。
相關(guān)資料
- 有價(jià)值
- 一般般
- 沒價(jià)值
{{item.userName}} 舉報(bào)
{{item.time}} {{item.replyListShow ? '收起' : '展開'}}評(píng)論 {{curReplyId == item.id ? '取消回復(fù)' : '回復(fù)'}}
{{_reply.userName}} 舉報(bào)
{{_reply.time}}