歐拉乘積
定義
假設(shè)a{\displaystyle a}為一積性函數(shù),則狄利克雷級(jí)數(shù)
等于歐拉乘積
其中,乘積對(duì)所有素?cái)?shù)p{\displaystyle p}進(jìn)行,P(p,s){\displaystyle P(p,s)}則可表示為
這可以看作形式母函數(shù),形式歐拉乘積展開(kāi)的存在性與a(n){\displaystyle a(n)}為積性函數(shù)兩者互為充要條件。
a(n){\displaystyle a(n)}為完全積性函數(shù)時(shí)可得到一重要的特例。此時(shí)P(p,s){\displaystyle P(p,s)}為等比級(jí)數(shù),有
當(dāng)a(n)=1{\displaystyle a(n)=1}時(shí)即為黎曼ζ函數(shù),更一般的情形則是狄利克雷特征。
參考文獻(xiàn)
G. Polya, Induction and Analogy in Mathematics Volume 1 Princeton University Press (1954) L.C. Card 53-6388 (A very accessible English translation of Euler"s memoir regarding this "Most Extraordinary Law of the Numbers" appears starting on page 91)
Apostol, Tom M., Introduction to analytic number theory, Undergraduate Texts in Mathematics, New York-Heidelberg:Springer-Verlag, 1976, ISBN 978-0-387-90163-3, MR 0434929, Zbl 0335.10001 (Provides an introductory discussion of the Euler product in the context of classical number theory.)
G.H. Hardy and E.M. Wright, An introduction to the theory of numbers, 5th ed., Oxford (1979) ISBN 0-19-853171-0 (Chapter 17 gives further examples.)
George E. Andrews, Bruce C. Berndt, Ramanujan"s Lost Notebook: Part I, Springer (2005), ISBN 0-387-25529-X
G. Niklasch, Some number theoretical constants: 1000-digit values"
免責(zé)聲明:以上內(nèi)容版權(quán)歸原作者所有,如有侵犯您的原創(chuàng)版權(quán)請(qǐng)告知,我們將盡快刪除相關(guān)內(nèi)容。感謝每一位辛勤著寫(xiě)的作者,感謝每一位的分享。
- 有價(jià)值
- 一般般
- 沒(méi)價(jià)值
{{item.userName}} 舉報(bào)
{{item.time}} {{item.replyListShow ? '收起' : '展開(kāi)'}}評(píng)論 {{curReplyId == item.id ? '取消回復(fù)' : '回復(fù)'}}
{{_reply.userName}} 舉報(bào)
{{_reply.time}}