克爾度規(guī)
克爾度規(guī)的數(shù)學(xué)表示
若以波以耳-林德奎斯特坐標(biāo)寫出克爾真空解,則為:
其中
M 為旋轉(zhuǎn)物體質(zhì)量;
a 為自轉(zhuǎn)參數(shù)(spin parameter)或稱特定角動(dòng)量(specific angular momentum),描述此物體的旋轉(zhuǎn),與角動(dòng)量 J 有關(guān),關(guān)系式為 a = J / M ;
所有的物理量采用幾何單位: c = G =1。
當(dāng)自轉(zhuǎn)參數(shù) a 值為零,則表示物體無旋轉(zhuǎn),克爾度規(guī)退化成史瓦西度規(guī)。 a = M 的例子對(duì)應(yīng)到最大旋轉(zhuǎn)程度的質(zhì)量物體。
注意到:
一般而言,波以耳-林德奎斯特徑向坐標(biāo) r 并無簡單而直接、如同徑向坐標(biāo)般的詮釋。
“最大”旋轉(zhuǎn)程度指的是一黑洞可以存在的最大 a 值,而非旋轉(zhuǎn)質(zhì)量物體可以具有的最大 a 值。
參看
史瓦西度規(guī)(Schwarzschild metric)
克爾-紐曼度規(guī)(Kerr-Newman metric)
雷斯勒-諾德斯特洛姆度規(guī)(Reissner-Nordstr?m metric)
參考文獻(xiàn)
延伸閱讀
Stephani, Hans; Kramer, Dietrich; MacCallum, Malcolm; Hoenselaers, Cornelius & Herlt, Eduard. Exact Solutions of Einstein"s Field Equations. Cambridge: Cambridge University Press. 2003. ISBN 978-0-521-46136-8.
O"Neill, Barrett. The Geometry of Kerr Black Holes. Wellesley, MA: A. K. Peters. 1995. ISBN 978-1-56881-019-5.
D"Inverno, Ray. Introducing Einstein"s Relativity. Oxford: Clarendon Press. 1992. ISBN 978-0-19-859686-8. See chapter 19 for a readable introduction at the advanced undergraduate level.
Chandrasekhar, S. The Mathematical Theory of Black Holes. Oxford: Clarendon Press. 1992. ISBN 978-0-19-850370-5. See chapters 6--10 for a very thorough study at the advanced graduate level.
Griffiths, J. B. Colliding Plane Waves in General Relativity. Oxford: Oxford University Press. 1991. ISBN 978-0-19-853209-5. See chapter 13 for the Chandrasekhar/Ferrari CPW model.
Adler, Ronald; Bazin, Maurice & Schiffer, Menahem. Introduction to General Relativity Second Edition. New York: McGraw-Hill. 1975. ISBN 978-0-07-000423-8. 引文格式1維護(hù):冗余文本 (link) See chapter 7 .
Perez, Alejandro; and Moreschi, Osvaldo M.. Characterizing exact solutions from asymptotic physical concepts. arXiv:Dec 2000 gr-qc/001210027 Dec 2000 . 2000. Characterization of three standard families of vacuum solutions as noted above.
Sotiriou, Thomas P.; and Apostolatos, Theocharis A. Corrections and Comments on the Multipole Moments of Axisymmetric Electrovacuum Spacetimes. Class. Quant. Grav. 2004, 21 : 5727–5733. arXiv eprintGives the relativistic multipole moments for the Ernst vacuums (plus the electrogmagnetic and gravitational relativistic multipole moments for the charged generalization).
Penrose R. ed C. de Witt and J. Wheeler, 編. Battelle Rencontres. W. A. Benjamin, New York. 1968: 222.
"The Classical Theory of Fields", L.D. Landau, E.M. Lifshitz, Fourth revised English edition, Elsevier, Amsterdam ... London, New York ... Tokyo, 1975 (based on B. Carter, 1968).
B. Carter, Phys. Rev. Lett. 26 , 331, 1971
免責(zé)聲明:以上內(nèi)容版權(quán)歸原作者所有,如有侵犯您的原創(chuàng)版權(quán)請(qǐng)告知,我們將盡快刪除相關(guān)內(nèi)容。感謝每一位辛勤著寫的作者,感謝每一位的分享。
- 有價(jià)值
- 一般般
- 沒價(jià)值
{{item.userName}} 舉報(bào)
{{item.time}} {{item.replyListShow ? '收起' : '展開'}}評(píng)論 {{curReplyId == item.id ? '取消回復(fù)' : '回復(fù)'}}
{{_reply.userName}} 舉報(bào)
{{_reply.time}}